Если просуммировать, то требуется следующие вещи:
- Аналитический подход, умение формулировать и проверять гипотезы
- Понимание принципов и особенности работы бизнеса и отдельных процессов
- Понимания экономики процессов
- Понимание технологий
- Умения связывать данные бизнес-процессами
И, если оторвать от машинного обучения, какая сфера это умеет делать лучше всего? Правильно — управленческий консалтинг. А где этому учат используя так называемый case-метод (много примеров из разных бизнес-ситуаций) — верно, на курсах MBA (master of business administration).
Таким образом, получается, что идеальный Data Scientist — выпускник MBA с опытом работы в консалтинге, прошедший курсы по машинному обучению.
Это, конечно, перебор, но верно то, что среди подрядчиков лидируют те, у кого внутри на уровне процессов и стандартов, на уровне подбора и обучения сотрудников развита культура аналитического мышления. Этого же подхода мы придерживаемся и у себя в
Студии Данных. И, что логично, такой же подход мы заложили в наше обучения в
Школе Данных.
Вы можете возразить. Ведь написанное выше в большей степени применимо в консалтинге, где каждый раз заранее не знаешь, из какой предметной области будет проект. А что в крупных компаниях, где область в принципе очерчена?
В компаниях мы наблюдаем все ту же специфику, описанную выше, и необходимость понимания бизнеса аналитиком и всей командой, необходимость наличия ответственности за финальный результат.
Именно по этой причине в крупных компаниях мы сейчас видим тренд в специализации подразделений Data Science и перемещения функции аналитики из централизованного подразделения, одного на всю компанию, в бизнес-функции, то есть, ближе к бизнесу. При такой специализации способность аналитика быстро разбираться в новом бизнесе и предлагать реально применимые решения, а не модели, является конкурентным преимуществом.